>>修课、报名连结
https://www.ewant.org/admin/tool/mooccourse/mnetcourseinfo.php?hostid=13&id=14088
>>修课证书申请&下载教学请见附件
下载时间:2024/07/01起
摘要
本课程主要将介绍资料科学的基本概念,包含资料处理流程、资料视觉化、资料储存、资料分析、资料预测等。课程中将使Python 进行资料科学实作,并以各种机器学习模式进行资料分析。学生将学会Python应用于资料科学的重要套件工具,以及几种重要的机器学习模式,对于未来从事资料科学相关工作或研究建立良好的基础。
This course will mainly introduce the basic concepts of data science, including data processing procedures, data visualization, data storage, data analysis, data prediction, etc. In the course, Python will be used for data science implementation and various machine learning models will be used for data analysis. Students will learn the important suite of Python tools used in data science, as well as several important machine learning models, establishing a good foundation for future work or research related to data science.
This course will mainly introduce the basic concepts of data science, including data processing procedures, data visualization, data storage, data analysis, data prediction, etc. In the course, Python will be used for data science implementation and various machine learning models will be used for data analysis. Students will learn the important suite of Python tools used in data science, as well as several important machine learning models, establishing a good foundation for future work or research related to data science.
课程目标
修习本课程学生将学会:
1. 资料科学的完整流程
2.料视觉化的呈现方式
3.进阶Python 套件工具的应用
4.机器学习的知识与方法
Students taking this course will learn:
1. The complete process of data science
2. Visual presentation of data
3. Application of advanced Python suite tools
4. Machine learning knowledge and methods
授课教师
吕威甫 老师吕威甫老师于2003年获得国立交通大学资讯科学博士学位,之后在中央研究院植物学研究所担任博士后研究员(2003~2004年),并在清云大学资讯工程系任助理教授(2004~2006年),以及在亚洲大学资讯工程系担任助理教授(2006~2023年),现任教于逢甲大学资讯工程系。他的研究兴趣包括计算生物学,生物资讯学,机器学习,无线传感器网络算法设计,线上学习算法与推荐系统。 |
课程进度表
单元 1:Introduction to Data Science and Python Basics
单元 2:Introduction to NumPy
单元 3:Data Manipulation with Pandas
单元 4:Visualization with Matplotlib
单元 5:期中考Midterm exam
单元 6:Machine Learning and Data Preprocessing
单元 7:Perceptron Learning Algorithm for Classification and logistic Regression
单元 8:K-nearest neighbors and Dimensionality Reduction
单元 9:Cluster analysis
单元 10:期末考Final exam
单元 2:Introduction to NumPy
单元 3:Data Manipulation with Pandas
单元 4:Visualization with Matplotlib
单元 5:期中考Midterm exam
单元 6:Machine Learning and Data Preprocessing
单元 7:Perceptron Learning Algorithm for Classification and logistic Regression
单元 8:K-nearest neighbors and Dimensionality Reduction
单元 9:Cluster analysis
单元 10:期末考Final exam
评分标准
平时测验:佔总成绩 30 %
期中考:佔总成绩 30 %
期末考:佔总成绩 40 %
通过标准
课程及格标准:60分满分:100分
先修科目或先备能力
基本程式能力、资讯工具使用能力、基础数学能力建议参考书目
1.Wes McKinney. Python for Data Analysis. O'Reilly Media, Inc. 2012.
2.Jake VanderPlas. Python Data Science Handbook, 2nd Edition. O'Reilly Media, Inc. 2022.
3.Frank Kane. Hands-On Data Science and Python Machine Learning. Packt Publishing. 2017.